Abstract

Although the removal of arsenic(V) (As(V)) from solution can be improved by forming metal-bearing coatings on solid media, there has been no research to date examining the relationship between the coating and As(V) sorption performance. Manganese-coated bone char samples with varying concentrations of Mn were created to investigate the adsorption and desorption of As(V) using batch and column experiments. Breakthrough curves were obtained by fitting the Convection-Diffusion Equation (CDE), and retardation factors were used to quantify the effects of the Mn coatings on the retention of As(V). Uncoated bone char has a higher retention factor (44.7) than bone char with 0.465 mg/g of Mn (22.0), but bone char samples with between 5.02 mg/g and 14.5 mg/g Mn have significantly higher retention factors (56.8–246). The relationship between retardation factor (Y) and Mn concentration (X) is Y = 15.1 X + 19.8. Between 0.2% and 0.6% of the sorbed As is desorbed from the Mn-coated bone char at an initial pH value of 4, compared to 30% from the uncoated bone char. The ability of the Mn-coated bone char to neutralize solutions increases with increased amounts of Mn on the char. The results suggest that using Mn-coated bone char in Permeable Reactive Barriers would be an effective method for remediating As(V)-bearing solutions such as acid mine drainage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.