Abstract

Glutathione S-transferase (GST) plays important roles in cellular detoxification and antioxidant defense. A Mu-type glutathione S-transferase (designated as SpMu-GST) was obtained from the mud crab Scylla paramamosain. The open reading frame of SpMu-GST was comprised a 690 bp, which encoded a putative protein of 229 amino acids. Quantitative real-time PCR (qRT-PCR) revealed that the SpMu-GST mRNA was expressed in all examined tissues, with highest expression in hepatopancreas. During ammonia exposure, the SpMu-GST transcriptions in hepatopancreas and gill were significantly up-regulated at early exposure time. Moreover, RNA interference (RNAi) experiment was designed to understand the roles of SpMu-GST under ammonia exposure. Ammonia exposure reduced the levels of glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and total antioxidative capacity (T-AOC), and increased the formation of malondialdehyde (MDA). After knockdown of the SpMu-GST level, GST activity and T-AOC were significantly decreased at some exposure time after ammonia exposure. However, the mortality of mud crabs and malondialdehyde (MDA) contents significantly increased under ammonia exposure. These results further suggested that SpMu-GST played a critical role in mud crab antioxidant defenses in response to environmental stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.