Abstract

Candida albicans is an opportunistic human pathogen that can form a biofilm on biotic or inert surfaces such as epithelia and clinical devices. In this study, we examine the formation of C. albicans biofilm by establishing a key gene-centered network based on protein-protein interaction (PPI) and gene expression datasets. Starting from C. albicans Cph1 and Efg1, transcription factors associated with morphogenesis of biofilm formation, a network elucidates the complex cellular process and predicts potential unknown components related to biofilm formation. Subsequently, we analyzed the functions of Mss11 among these identified proteins to test the efficiency of the proposed computational approach. MSS11-deleted mutants were compared with a wild-type strain, indicating that the mutant is defective in forming a mature biofilm and partially attenuates the virulence of C. albicans in an infected mouse model. Finally, a DNA microarray analysis was conducted to identify the potential target genes of C. albicans Mss11. The findings of this study clarify complex gene or protein interaction during the biofilm formation process of C. albicans, supporting the application of a systems biology approach to study fungal pathogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.