Abstract
The continued increase in population and the industrial revolution have led to an increase in atmospheric carbon dioxide (CO2) concentration. Consequently, developing and implementing effective solutions to reduce CO2 emissions is a global priority. The electrochemical CO2 reduction reaction (CO2RR) is strongly believed to be a promising alternative to fossil fuel-based technologies for the production of value-added chemicals. So far, the implementation of CO2RR is hindered by associated electrochemical reactions, such as low selectivity, hydrogen evolution reaction (HER), and additional overpotential induced in some cases. As a result, it is necessary to conduct a timely evaluation of the state-of-the-art strategies in CO2RR, with a focus on the engineering of the electrocatalytic systems. Catalyst morphology is one factor that plays a critical role in overcoming these drawbacks and significantly contributes to enhancing product selectivity and Faradaic efficiency (FE). This review article summarizes the recent advances in the rational design of electrocatalysts with various morphologies and the influence of these morphologies on CO2RR. To compare literature findings in a meaningful way, the article focuses on results reported under a well-defined period and considers the first three rows of the d-block metal catalysts. The discussion typically covers the design of nanostructured catalysts and the molecular-level understanding of morphology-performance relationship in terms of activity, selectivity, and stability during CO2 electrolysis. Among others, it would be convenient to recommend a comprehensive discussion on the morphologies of single metals and heterostructures, with a detailed emphasis on their impact on CO2 conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.