Abstract

It has been experimentally found that molybdenum oxide (MoO 3) as the interfacial modification layer on indium-tin-oxide (ITO) in organic light-emitting diodes (OLEDs) significantly improves the efficiency and lifetime. In this paper, the role of MoO 3 and MoO 3 doped N, N′-di(naphthalene-1-yl)– N, N′-diphenyl-benzidine (NPB) as the interface modification layer on ITO in improvement of the efficiency and stability of OLEDs is investigated in detail by atomic force microscopy (AFM), polarized optical microscopy, transmission spectra, ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The studies on the energy level and the morphology of the films treated at different temperatures clearly show that the MoO 3 and MoO 3:NPB on ITO can reduce the hole injection barrier, improve the interfacial stability and suppress the crystallization of hole-transporting NPB, leading to a higher efficiency and longer lifetime of OLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.