Abstract

Phthalocyanines are a class of mammalian cell photosensitizers which may be useful in photodynamic therapy for cancer. Chloroaluminum phthalocyanine tetrasulfonate was incubated with Chinese hamster cells in culture and exposed to white light at different concentrations of oxygen. The ability of the cells to form colonies served as an end point for the photobiological effect of the dye. The efficiency of photoinactivation of the sensitized cells decreased with decreasing oxygen concentration. Very little photoinactivation was observed when the atmosphere equilibrated with the cells was oxygen-free nitrogen. At an oxygen partial pressure of 2.5 mm Hg, photoinactivation was reduced by 50% compared to ambient atmosphere. In an attempt to understand the nature of the interaction between excited dyes and oxygen, the ability of several phthalocyanines to photogenerate singlet oxygen was measured. Thus phthalocyanines containing paramagnetic ions (copper, iron, vanadyl) do not generate 1O2 in contradistinction to diamagnetic metals (zinc and aluminum). The latter are efficient photosensitizers, while the former have little if any photobiological activity. In spite of this correlation, singlet oxygen may not be the intermediate involved in cytotoxicity. The reasons are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.