Abstract

In this letter, we employ a three-dimensional master equation calculation to investigate the mobility dependence of bulk heterojunction (BHJ) solar cell performance. By taking energetic disorder and morphology into consideration, we show mobility-enhanced device efficiency with a remarkable charge transport loss induced by molecular disorder and an open circuit voltage loss in high mobility region due to morphological defect-assisted bimolecular recombination. The result suggests that the description of interfacial processes is crucial in the modeling of BHJ photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.