Abstract

Matrix metalloproteinases (MMPs) are a family of endopeptidases that mediate vascular remodeling by degrading extracellular matrix components, such as collagen and elastin. On the basis of accumulating evidence that implicates increased MMP-2 (gelatinase A) and MMP-9 (gelatinase B) amounts and activity in the pathogenesis of aneurysms, the authors investigated the genetic association between polymorphisms in MMP-2 and MMP-9 and sporadic intracranial aneurysms. Eight polymorphisms located in MMP-2 and MMP-9 were genotyped, and the association of these variations with disease was assessed in a Caucasian population consisting of 125 patients with intracranial aneurysms and 234 ethnically matched healthy volunteers. Polymorphisms in the MMP-2 gene and the haplotypes generated from these polymorphisms were not associated with the occurrence of intracranial aneurysms. However, a polymorphism located in the 3' untranslated region of MMP-9 showed a significant association with disease in the study population, with individuals carrying the TT genotype at increased risk for developing intracranial aneurysms (odds ratio 1.91, p = 0.005). Haplotypes containing the T allele of this polymorphism also showed a comparable association with disease. Similar results were obtained in an analysis of these polymorphisms in a subgroup of patients who presented with ruptured aneurysms. The study findings support a role for MMP-9, but not MMP-2, in the pathogenesis of intracranial aneurysms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.