Abstract

Traumatic brain injury (TBI) is a public health problem in which even though 80 to 90% of cases are considered mild, usually starts a sequence of neurological disorders that can last a considerable time. Most of the research of this injury has been focused on oxidative stress and functional deficits; however, mechanisms that underlie the development of neuropsychiatric disorders remain little researched. Due to this, the present authors decided to investigate whether recurrent concussion protocols alter depressive-like phenotype behavior, and whether mitochondria play an indispensable role in this behavior or not. The experimental data revealed, for the first time, that the present protocol of recurrent concussions (4, 7, and 10 injuries) in mice did not alter immobility time during tail suspension tests (TSTs), but decreased hippocampal mitochondrial respiration and increased expression of proteins such as nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide (SOD2). This experimental data suggests that bioenergetic changes elicited by recurrent concussion did not induce depressive-like behavior, but activated the transcription factor of responsive antioxidant elements (ARE) that delay or prevent secondary cascades in this neurological disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.