Abstract

Acute lymphoblastic leukemia (ALL) is the most common cancer in children worldwide. Although ALL patients' overall survival rates in wealthy countries currently surpass 80%, 15-20% of patients still experience relapse. The underlying mechanisms of relapse are still not fully understood, and little progress has been made in treating refractory or relapsed disease. Disease relapse and treatment failure are common causes of leukemia-related death. In ALL relapse, several gene signatures have been identified, but it is also important to study miRNAs involved in ALL relapse in an effort to avoid relapse and to achieve better survival rates since miRNAs regulate target genes that participate in signaling pathways involved in relapse, such as those related to drug resistance, survival signals, and antiapoptotic mechanisms. Several miRNAs, such as miR-24, miR-27a, miR-99/100, miR-124, miR-1225b, miR-128b, miR-142-3p, miR-155 and miR-335-3p, are valuable biomarkers for prognosis and treatment response in ALL patients. Thus, this review aimed to analyze the primary miRNAs involved in pediatric ALL relapse and explore the underlying molecular mechanisms in an effort to identify miRNAs that may be potential candidates for anti-ALL therapy soon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.