Abstract

Excessive and continuous application of deltamethrin has resulted in the development of deltamethrin resistance among mosquitoes, which becomes a major obstacle for mosquito control. In a previous study, differentially expressed miRNAs between deltamethrin-susceptible (DS) strain and deltamethrin-resistant (DR) strain using illumina sequencing in Culex pipiens pallens were identified. In this study, we applied RNAi and the Centers for Disease Control and Prevention (CDC) bottle bioassay to investigate the relationship between miR-2∼13∼71 cluster (miR-2, miR-13 and miR-71) and deltamethrin resistance. We used quantitative real-time PCR (qRT-PCR) to measure expression levels of miR-2∼13∼71 clusters. MiR-2∼13∼71 cluster was down regulated in adult female mosquitoes from the DR strain and played important roles in deltamethrin resistance through regulating target genes, CYP9J35 and CYP325BG3. Knocking down CYP9J35 and CYP325BG3 resulted in decreased mortality of DR mosquitoes. This study provides the first evidence that miRNA clusters are associated with deltamethrin resistance in mosquitoes. Moreover, we investigated the regulatory networks formed between miR-2∼13∼71 cluster and its target genes, which provide a better understanding of the mechanism involved in deltamethrin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.