Abstract
CD4+ T cells are considered the main orchestrators of autoimmune diseases. Their disruptive effect on CD4+ T cell differentiation and the imbalance between T helper cell populations can be most accurately determined using experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis (MS). One epigenetic factor known to promote autoimmune inflammation is miRNA-155 (miR-155), which is significantly upregulated in inflammatory T cells. The aim of the present study was to profile the transcriptome of immunized mice and determine their gene expression levels based on mRNA and miRNA sequencing. No statistically significant differences in miRNA profile were observed; however, substantial changes in gene expression between miRNA-155 knockout (KO) mice and WT were noted. In miR-155 KO mice, mRNA expression in CD4+ T cells changed in response to immunization with the myeloid antigen MOG35-55. After restimulation with MOG35-55, increased Ffar1 (free fatty acid receptor 1) and Scg2 (secretogranin-2) expression were noted in the CD4+ T cells of miR-155-deficient mice; this is an example of an alternative response to antigen stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.