Abstract
The process of removing sulfur compounds and aromatic compounds to produce clean fuel is an important and effective contribution to the processes of mitigating and adapting to climate change. In contrast, it is necessary to find an innovative way to remove sulfur and carcinogenic aromatic compounds because clean, low-sulfur diesel is commonly used in all countries of the world at the present time. Therefore, in this work, we have studied the effect of the microwave radiation power and the irradiation time with the use of more than one type of organic solvent; methanol, acetonitrile and ethyl acetoacetate; as an extractant and solvent to feed ratio impact on the removal of sulfur and aromatic compounds of a real diesel fuel feed which has 450 ppm sulfur content and 16 wt% aromatic Content. The results showed that the best solvent used during this work was ethyl acetoacetate. According to the results, high sulfur removal (≈ 92%) was accomplished with microwave-assisted extractive desulfurization technique under the following ideal conditions: the irradiation time is 7 min, the solvent feed ratio is 3:1 and the microwave intensity is 180 W. To reveal the mechanism of microwave-assisted extractive desulfurization via different organic solvents, a theoretical study including structural examination and interaction energy analysis on the interaction between dibenzothiophene (DBT) or dimethyl dibenzothiophene (DMDBT) and the different organic solvents was also conducted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.