Abstract

We analyzed the pathological consequences of abnormal Wnt/β-catenin signaling in endothelial cells of brain vessels using a murine model of Cerebral Cavernous Malformation (CCM) disease that develops after endothelial-cell-selective ablation of the CCM3 gene. We report increased transcription activity of β-catenin in CCM3-knockout endothelial cells in in-vitro and in-vivo models. Such activation is cell-autonomous, independent of Wnt-receptor stimulation, does not induce canonical Wnt/β-catenin signaling and represents an early response to CCM3 ablation that initiates the expression of EndMT makers before the onset of Tgf-β/BMP signaling which is required for the progression of the pathology, as we have previously described. We also show that the NSAIDs sulindac sulfide and sulindac sulfone, which attenuate β-catenin transcription activity, significantly reduce the number and dimension of vascular lesions in the central nervous system of mice with endothelial cell CCM3 knockout. These NSAIDs thus represent pharmacological tools for inhibition of the formation of vascular lesions, particularly with a view to patients affected by the genetic variant of CCM, who continue to develop new malformations over time.

Highlights

  • Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia

  • The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression

  • No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression

Read more

Summary

Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call