Abstract

Tempered martensite lath structure (TMLS) plays a vital role in creep resistance of high chromium martensitic steels. Under creep conditions the TMLS could be stabilized by three agents: (i) a dispersion of boundary M23C6 carbides and Laves phase; (ii) a dispersion of M(C,N) carbonitrides, which are homogeneously distributed within ferritic matrix; (iii) substitutional alloying element within ferritic matrix. The boundary particles exert a large Zener drag force which effectively hinders migration of low-and high-angle boundaries. A dispersion of M(C,N) carbonitrides both within ferritic matrix and lath boundaries provides the pinning of mobile dislocations. This process is responsible for reliving long-range elastic stress field originated from lath boundaries. In addition, M(C,N) carbonitrides provide high threshold stress. Substitutional elements as W and Mo effectively slowing down diffusion in ferritic matrix retard climb of lattice dislocation that also prevents the aforementioned knitting reaction. The suppression of knitting reaction between lattice dislocation and low-angle boundaries prevents their transformation to subboundaries by concurrent operation of all three agent types. Depletion of W and Mo from solid solution leads to the occurrence of static recovery and precipitation of Laves phase at boundaries under long-term aging. This process is responsible for creep strength breakdown. The strain-induced formation of Z-phase at the expense of V-rich M(C,N) carbonitrides highly facilitates this process. However, slow strain-induced coarsening of M23C6 carbides and M(C,N) carbonitrides provides the suppression of the knitting reaction between mobile lattice dislocations and intrinsic dislocations of lath boundaries and replacement of TMLS by subgrain structure. Ostwald ripening of boundary M23C6 carbides and Laves phase leads to rapid creep rate increase with strain in tertiary creep and premature rupture owing to the formation of subgrain structure replaced TMLS and further subgrain growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.