Abstract

Damage development during quasistatic tensile loading of several laminates of graphite/epoxy material is examined and compared to damage development in laminates of a similar graphite/epoxy material subjected to tension-tension fatigue loading. Emphasis is placed upon following damage development at the microstructural level. Evidence of the important role of off-axis ply cracks in localizing and controlling fiber fracture in adjacent load-bearing plies for both loading modes is resented. The relationship between fiber fracture density and static load level is presented for tensile loading of unidirectional and cross-ply laminates by direct observation of fiber fracture in situ. The frequencies of occurrence of multiple adjacent fiber fractures are also reported. The cross-ply laminate results are compared with those from fatigue testing. Significant differences are described and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call