Abstract

Expanding the stress tolerance and adaptation potential of primary producers is of importance for the restoration and management of aquatic ecosystems. Microorganisms have been reported to mediate improved resistance toward different abiotic stresses of primary producers in terrestrial and marine ecosystems. However, it is not clear about the role of microbial communities in the turbidity resistance of primary producers, when aquatic ecosystems are under turbidity pressure. In this study, key microbes and the action path which enhance turbidity tolerance of primary producers were recognized by mesocosm and various multivariate statistical methods. Remarkable decrease of the biomass of primary producers was found with the increase of turbidity. Significant differences in microbial community under different turbidity pressure were recognized and key microbes which may expand the turbidity tolerance of primary producers were further identified. Rhodobacter and Rhodoferax were selected as key microbes by the investigation of keystone species in the microbial ecological network and significant discriminant taxa under different turbidity stress. The action path for microbial communities to help primary producers cope with turbidity pressure was found through structural equation model, and in which the increase of key microbes may expand the turbidity tolerance of primary producers through enhancing the microbial loop. The results may provide a new insight for aquatic ecosystems to resist turbidity stress, and provide a theoretical basis for the management and restoration of aquatic ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call