Abstract
Susceptibility to type I diabetes is linked to class II MHC alleles in both mouse and man. However, the molecular mechanisms by which MHC molecules mediate disease susceptibility are unknown. To analyze how I-A alleles predispose to, or prevent, the development of type I diabetes, we have chosen, as the first step, to investigate the immune response to an important islet cell protein in diabetes-susceptible and diabetes-resistant mice. MHC class II alleles conferring susceptibility and resistance to diabetes select completely different sets of immunogenic epitopes from the beta islet cell autoantigen glutamic acid decarboxylase 65. Peptide-binding studies, analysis of MHC restriction, and immunization with these peptide epitopes indicate that the two amino acid substitutions within the I-A(beta) chain that distinguish a diabetes-susceptibility from a diabetes-resistance allele are sufficient to alter peptide binding and MHC restriction and may also influence antigen presentation and the selection of the T cell repertoire. The data indicate that the molecular mechanisms for class II-mediated selection of immunodominant epitopes are complex and differ for each individual peptide epitope. Further study of the functional characteristics of the response to these epitopes should provide insight into mechanisms of MHC-mediated diabetes susceptibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.