Abstract

A one-dimensional fluid model for homogeneous atmospheric pressure barrier discharges in helium is presented by considering elementary processes of excitation and ionization including a metastable atom effect. Using this model we investigate the behaviours of the helium metastable atoms in discharges as well as their influence on the discharge characteristics. It is shown that the metastable atoms with a relatively high concentration during the discharge are mainly produced in the active phase of the discharge and dissolved in the off phase. It is also found that the metastable atom collisions can not only provide seed electrons for discharges but also influence the concentration of ions. A reduction of matestable atom density results in a drop in the charged particle densities and causes a qualitative change in the discharge patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call