Abstract

Non-excitable cells (NECs) such as cardiac myofibroblasts that are electrotonically coupled to cardiomyocytes affect conduction velocity (θ) by representing a capacitive load (CL: increased membrane to be charged) and a resistive load (RL: partial depolarization of coupled cardiomyocytes). In this study, we untangled the relative contributions of both loading modalities to NEC-dependent arrhythmogenic conduction slowing. Discrimination between CL and RL was achieved by reversibly removing the RL component by light activation of the halorhodopsin-based hyperpolarizing membrane voltage actuator eNpHR3.0-eYFP (enhanced yellow fluorescent protein) expressed in communication-competent fibroblast-like NIH3T3 cells (3T3HR cells) that served as a model of coupled NECs. Experiments were conducted with strands of neonatal rat ventricular cardiomyocytes coated at increasing densities with 3T3HR cells. Impulse conduction along preparations stimulated at 2.5 Hz was assessed with multielectrode arrays. The relative density of 3T3HR cells was determined by dividing the area showing eYFP fluorescence by the area covered with cardiomyocytes [coverage factor (CF)]. Compared to cardiomyocytes, 3T3HR cells exhibited a depolarized membrane potential (−34 mV) that was shifted to −104 mV during activation of halorhodopsin. Without illumination, 3T3HR cells slowed θ along the preparations from ∼330 mm/s (control cardiomyocyte strands) to ∼100 mm/s (CF = ∼0.6). Illumination of the preparation increased the electrogram amplitudes and induced partial recovery of θ at CF > 0.3. Computer simulations demonstrated that the θ deficit observed during illumination was attributable in full to the CL represented by coupled 3T3HR cells with θ showing a power-law relationship to capacitance with an exponent of −0.78 (simulations) and −0.99 (experiments). The relative contribution of CL and RL to conduction slowing changed as a function of CF with CL dominating at CF ≤ ∼0.3, both mechanisms being equally important at CF = ∼0.5, and RL dominating over CL at CF > 0.5. The finding that RL did not affect θ at CFs ≤ 0.3 is explained by the circumstance that, at the respective moderate levels of cardiomyocyte depolarization, supernormal conduction stabilized propagation. The findings provide experimental estimates for the dependence of θ on membrane capacitance in general and suggest that the myocardium can absorb moderate numbers of electrotonically coupled NECs without showing substantial alterations of θ.

Highlights

  • Heart rhythm disorders are frequent complications of cardiac disease

  • The results demonstrate that capacitive loading of CMCs by coupled non-excitable cells (NECs) is important for conduction slowing as resistive loading

  • The small electrogram amplitudes found in slowly conducting preparations indicated that slow conduction, similar to myofibroblasts, was dependent on sodium current inactivation secondary to 3T3HR cell–induced CMC depolarization, that is, resistive loading. These findings suggested that primary cardiac myofibroblasts can be substituted by 3T3HR cells when probing the relative contributions of capacitive load (CL) and RL to conduction slowing in coupled CMCs

Read more

Summary

Introduction

Heart rhythm disorders are frequent complications of cardiac disease. The initiation of reentrant arrhythmias such as flutter and fibrillation results from slow conduction of the cardiac action potential and conduction block (Kleber and Rudy, 2004). The velocity of conduction is determined primarily by the density and kinetics of voltagegated channels carrying inward currents, as well as by the level of gap junctional coupling between cardiomyocytes (CMCs) (Shaw and Rudy, 1997; Rohr et al, 1998). Electrotonic coupling of NECs to CMCs slows impulse conduction based on two main mechanisms: (1) NECs like myofibroblasts exhibit a reduced (less negative) membrane potential (Vm) compared to CMCs (Salvarani et al, 2017) They induce partial CMC depolarization upon establishment of heterocellular electrotonic coupling. Θ was reported to first slightly increase and monotonically decrease, thereby reproducing the phenomenon of supernormal conduction that characterizes the response of θ to increasing CMC depolarization as induced, for example, by a gradual increasing extracellular potassium concentration (Kagiyama et al, 1982; Shaw and Rudy, 1997; Rohr et al, 1998; Miragoli et al, 2006; Jacquemet and Henriquez, 2008). (2) Even if NECs were to display a Vm similar to the RMP of CMCs, and sodium-channel availability would not be compromised, electrotonic coupling between the two cell types would still be expected to slow conduction because the membrane capacitance of NECs will be charged during activation of coupled CMCs, which results in a reduction of the amount of depolarizing current available for an efficient downstream depolarization of CMCs as shown before in computer simulations (Jacquemet and Henriquez, 2008)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call