Abstract

Co-Cr-Mo alloys are among the most used alloys for orthopedic implants because of their excellent corrosion resistance, mechanical properties, and biocompatibility. Although there is extensive literature on corrosion properties of Co-Cr-Mo alloys, fewer articles are focused on the synergistic effect of corrosion and wear in a simulated physiological solution. It is generally assumed that the current density measured during wear conditions for passive materials comes from the active area. However, there are no clear data supporting this statement. The current article correlates electrochemical measurements with the active area generated during sliding wear tests. Open circuit potential and current measurements, potentiodynamic scans, and electrochemical impedance spectroscopy were carried out on samples under static and sliding wear conditions. These measurements showed the importance of the active area, where the current coming from the surface not being abraded is negligible. Finally, by combining the sliding wear and electrochemical tests, the synergistic effect of wear and corrosion was characterized for this alloy, documenting the metal carbide's detachment from the cobalt alloy matrix, which leads to a significant increase of total wear volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call