Abstract

ABSTRACT Here, we report our findings about the effect of 11 two-body mean-motion resonances (MMRs) with Jupiter, on the mobility of an asteroid’s semimajor axis caused by the Yarkovsky effect. This study is accomplished using numerical integrations of test particles. The obtained results reveal that MMRs could either speed up or slow down the drift in the semimajor axis. Moreover, this allows us to determine the distribution that represents the best data obtained for time delays dtr caused by the resonances on the mobility of an asteroid. We also found a certain functional relationship that describes dependence of the average time lead/lag ⟨ dtr ⟩ ?> on the strength of the resonance SR and the semimajor axis drift speed da/dt. As the Yarkovsky effect scales as 1 / D ?> , an important consequence of this relationship is that average time lead/lag ⟨ dtr ⟩ ?> is directly proportional to the diameter D of an asteroid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.