Abstract
Mutations in p53 change the sensitivity to cancer chemotherapeutic drugs. Whereas many drugs, including the vinca alkaloids, often become less effective when p53 is transcriptionally inactivated, several, most notably paclitaxel, may become more effective. In studying the underlying mechanism(s), we found that increased MAP4 expression, which occurs with transcriptionally silent p53, is associated with increased sensitivity to paclitaxel and decreased sensitivity to vinca alkaloids. Using murine fibroblasts transfected with MAP4, we directly demonstrated that the changes in drug sensitivity were associated with parallel alterations in drug-induced apoptosis and cell-cycle arrest. Immunofluorescent staining of the microtubule network revealed that cells with increased MAP4 expression displayed an increase in polymerized microtubules and an increased binding of fluorsceinated paclitaxel. Since MAP4 stabilizes polymerized microtubules, overexpression of this gene provides a plausible mechanism to explain the altered sensitivity to microtubule-active drugs in the presence of mutant p53.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.