Abstract

Fulvic acid (FA) plays a key role in governing the environmental geochemistry behavior of heavy metals. In this work, the roles of major functional groups were investigated based on binding experiments of heavy metals on natural FA extracted from lake sediments. The results showed that the adsorption capacities were ranked as Cu2+ > Pb2+ >Cd2+. The differences of peak area at 3412, 1713, 617and 2430 cm−1 pre- and post-binding reactions in FTIR spectra suggested that phenolic, carboxyl and nitrogen-containing groups were the major functional groups providing sites binding heavy metals. Moreover, the results of bi-Langmuir model and the ionic strength effects jointly indicated that electrostatic attraction was the key mechanism during the adsorption process. The fitted results of Ligand-binding model suggested that the major functional groups in FA were classified into two types binding sites: weak (i.e. phenolic and carboxyl groups) and strong binding sites (i.e. nitrogen-containing groups). Additionally, there might be p-benzoquinone-like formed in FA which were then reduced to hydroquinone during the adsorption process, corresponding to the changing of peak area at 1614 and 830 cm−1 in FTIR spectra, the occurrence of Peak C in Fluorescence excitation-emission matrix (EEM) spectra and the ratios of H/C (<1) and O/C (≈1). The organic matter in sediments from Lake Wuliangsuhai presented similar characteristics with terrestrial plants due to the lake characterized by Phragmites australis and Potamogeton pectinatus L. being the dominant species, which shared large proportions of woody tissues as well as waxy hydrocarbons resembling that of terrestrial plants. This work is useful to insight the environmental effects of FA on heavy metals in environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call