Abstract

In wire array Z-pinches, the magnetic field configuration and the global field penetration of individual wires play a key role in the ablation plasma dynamics. Knowledge of the magnetic field configuration is necessary to understand the ablation plasma acceleration process near the wires. Two-dimensional resistive magnetohydrodynamics simulations show that a change in the global magnetic field configuration is critical to initiating inward flow of the ablation plasma. Analysis of these simulations show that the initially compressive J×B force around a wire in its vacuum field configuration undergoes a transition to a configuration in which the Lorentz force can accelerate plasma toward the array axis. This transition is achieved through a low magnetic Reynolds number diffusive flow in which the plasma and the magnetic field are decoupled. The plasma current follows the expanding plasma toward the array axis and, after traveling a critical distance scaling with the array radius divided by the wire number, the global magnetic field threads the wire core, thereby allowing J×B coronal acceleration into ablation streams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.