Abstract

Glycerophospholipids, a primary component of cellular membranes, play important structural and functional roles in cells. In the remodelling pathway (Lands' cycle), the concerted actions of phospholipase As and lysophospholipid acyltransferases (LPLATs) contribute to the incorporation of diverse fatty acids in glycerophospholipids in an asymmetric manner, which differ between cell types. In this study, the role of LPLATs in osteoblastic differentiation of C2C12 cells was investigated. Gene and protein expression levels of lysophosphatidylcholine acyltransferase 2 (LPCAT2), one of the LPLATs, increased during osteoblastic differentiation in C2C12 cells. LPCAT2 knockdown in C2C12 cells downregulated the expression of osteoblastic differentiation markers and the number and size of lipid droplets (LDs) and suppressed the phosphorylation of Smad1/5/9. In addition, LPCAT2 knockdown inhibited Snail1 and the downstream target of Runx2 and vitamin D receptor (VDR). These results suggest that LPCAT2 modulates osteoblastic differentiation in C2C12 cells through the bone morphogenetic protein (BMP)/Smad signalling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.