Abstract

As a homo-oligomeric protein, the disassembly of Escherichia coli RbsD decamer produces a urea-unfolded oligomeric intermediate structure, asthe dissociation speed of the protein is lower than that of the unfolding process. There are five Lys2-Cl- -Lys2 salt linkages to connect these subunits. To explore the role of the salt linkages in these oligomeric intermediates, the Lys2Ala mutated in the N-terminal of E. coli RbsD protein subunit was designed. It was found that the RbsD mutation protein (RbsD:K2A) loses its minor larger oligomers, which exist in RbsD, and displays other several oligomeric states (less than decamers), meanwhile the state of the oligomers depends on the protein concentration. It was also found that compared with RbsD, the crosslinking capability of the subunits of RbsD:K2A is weaker, while the crosslinking rate ofdimers is higher, RbsD:K2A needs to substantially adjust its conformation to meet the space requirements when combined with d-ribose. On the basis of these results, we suggest that Lys2-Cl- -Lys2 salt linkages in E. coli RbsD protein play an important role in stabilizing the intermediate products of oligomers and maintaining interaction betweenthe intermediate products of oligomers, which may shedlight on the studyofthese oligomeric proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.