Abstract

Endorheic basins located in semiarid or arid regions constitute one of the most vulnerable and exposed environments to NO3- pollution. The Pétrola basin (Central Spain) is an outstanding example of one of these endorheic system. Several constraints have been observed that impede correct identification of the denitrification pathway and its degree at the field scale. To better understand the key factors controlling NO3- attenuation, a five-stage column experiment was performed using organic and pyrite rich sediments from the Utrillas Facies (Lower Cretaceous) as a possible electron donor source to promote denitrification. A chemical and multi-isotopic characterization (δ15NNO3, δ18ONO3, δ13CDIC, δ34SSO4, δ18OSO4) of the outflow of the column experiment showed that NO3- attenuation was driven by organic matter. The amount of organic C consumed during denitrification was 2% of the total organic C present in the sediment. Both the degree and rate of denitrification were related to flow rate variations. Lower flow rates favored bacterial growth at the beginning of the experiment producing an increase of complete denitrification rate (CDR). When NO3- reduction was greater than 15%, CDR remained constant (around 30μmolL−1d−1) under different flow rates. In the last stage, flow rate had no effect on output NO3- concentration because the organic C supply was limited and had become the main kinetic factor in denitrification. Isotopic fractionations (ε of 15N–NO3- and 18O–NO3- between reaction products and remaining reactants were calculated using representative column samples. The results for the two attenuation stages observed were −11.6‰ and −15.7‰ for εN, and −12.1‰ and −13.8‰ for εO. Most of the field samples showed a percentage of attenuation ranging from 0% to 60% of NO3- removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.