Abstract

The magnetisation reversal behaviour as a function of composition was studied in low rare earth concentration alloys. 30 nm thick rare earth:transition-metal films of composition GdxCo100−x, GdxFe100−x and Gdx(Co50Fe50)100−x were prepared by magnetron sputtering, where x ranged from 4 to 13 atomic%. Magnetisation behaviour was studied using MOKE and Hall hysteresis measurements. The magnetic reversal behaviour as a function of Gd content is strongly dependent on the transition metal. With increasing Gd content the film structure transitions from crystalline to amorphous and the saturation magnetisation decreases linearly. For GdCo, the reversal field, Hc, increases by less than a factor of two with Gd doping of 11%, while for Fe, the coercivity falls by a factor of ten with 8% Gd. This may be attributed to changes in the crystalline morphology. GdCoFe shows a similar trend with Gd doping for the in-plane reversal field to that of GdFe. With 13% Gd in Fe there is evidence indicating the presence of a weak perpendicular magnetic anisotropy, PMA. With Gd doping the anomalous Hall resistivity of Co, Fe and CoFe increases significantly with the largest increase observed for GdCoFe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.