Abstract

Currently, vision-related neuroscience studies are undergoing a trend from simplified image stimuli toward more naturalistic stimuli. Virtual reality (VR), as an emerging technology for visual immersion, provides more depth cues for three-dimensional (3D) presentation than two-dimensional (2D) image. It is still unclear whether the depth cues used to create 3D visual perception modulate specific cortical activation. Here, we constructed two visual stimuli presented by stereoscopic vision in VR and graphical projection with 2D image, respectively, and used electroencephalography to examine neural oscillations and their functional connectivity during 3D perception. We find that neural oscillations are specific to delta and theta bands in stereoscopic vision and the functional connectivity in the two bands increase in cortical areas related to visual pathways. These findings indicate that low-frequency oscillations play an important role in 3D perception with depth cues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call