Abstract

Noradrenergic locus coeruleus (LC) neurons were recorded in monkeys performing a visual discrimination task, and a computational model was developed addressing the role of the LC brain system in cognitive performance. Changes in spontaneous and stimulus-induced patterns of LC activity correlated closely with fluctuations in behavioral performance. The model explains these fluctuations in terms of changes in electrotonic coupling among LC neurons and predicts improved performance during epochs of high coupling and synchronized LC firing. Cross correlations of simultaneously recorded LC neurons confirmed this prediction, indicating that electrotonic coupling in LC may play an important role in attentional modulation and the regulation of goal-directed versus exploratory behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.