Abstract

Teleporting an unknown qubit state is a paradigmatic quantum information processing task revealing the advantage of quantum communication protocols over their classical counterpart. For a teleportation protocol using a Bell state as quantum channel, the resource has been identified to be the concurrence. However, for mixed multipartite states the lack of computable entanglement measures has made the identification of the quantum resource responsible for this advantage more challenging. Here, by building on previous results showing that localizable concurrence is the necessary resource for controlled quantum teleportation, we show that any teleportation protocol using an arbitrary multipartite state, that includes a Bell measurement, requires a nonvanishing localizable concurrence between two of its parties to perform better than the classical protocol. By first analyzing Greenberger–Horne–Zeilinger (GHZ) channel and GHZ measurement teleportation protocol, in the presence of GHZ-symmetric-preserving noise, we compare different multipartite entanglement measures with the fidelity of teleportation, and we find that the protocol performs better than the classical protocol when all multipartite entanglement measures vanish, except for the localizable concurrence. Finally, we extend our proof to an arbitrary teleportation protocol with an arbitrary multipartite entangled channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.