Abstract

Our objective was to estimate and analyze the body-size distribution parameters of terrestrial mammal assemblages at different spatial scales, and to determine whether these parameters are controlled by local ecological processes or by larger-scale ones. Based on 93 local assemblages, plus the complete mammal assemblage from three continents (Africa, North, and South America), we estimated three key distribution parameters (diversity/size slope, skewness, and modal size) and compared the values to those expected if size distributions are mainly controlled by local interactions. Mammal diversity decreased much faster as body size increased than predicted by fractal niche theory, both at continental and at local scales, with continental distributions showing steeper slopes than the localities within them. South America showed a steeper slope (after controlling for species diversity), compared to Africa and North America, at local and continental scales. We also found that skewness and modal body size can show strikingly different correlations with predictor variables, such as species richness and median size, depending on the use of untransformed versus log-transformed data, due to changes in the distribution density generated by log-transformation. The main differences in slope, skewness, and modal size between local and continental scales appear to arise from the same biogeographical process, where small-sized species increase in diversity much faster (due to higher spatial turnover rates) than large-sized species. This process, which can operate even in the absence of competitive saturation at local scales, generates continental assemblages with steeper slopes, smaller modal sizes, and higher right skewness (toward small-sized species) compared to local communities. In addition, historical factors can also affect the size distribution slopes, which are significantly steeper, in South American mammal assemblages (probably due to stronger megafauna extinction events in South America) than those in North America and Africa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call