Abstract

The DOF (DNA-binding with one finger) transcription factors are exclusive to plants and play crucial roles in plant growth, development, and environmental adaptation. Although extensive research has been conducted on the Dof gene family in Arabidopsis, maize, and Solanum, investigations concerning the role of this gene family in Liriodendron remain unreported, leaving its biological function largely unknown. In this study, we performed a comprehensive genome-wide identification of the Dof gene family based on the Liriodendron genome, resulting in the discovery of a total of 17 LcDof gene members. Based on the results of phylogenetic analysis, the 17 LcDof proteins were classified into eight subfamilies. The motif analysis revealed the diverse nature of motifs within the D1 subfamily, which includes a distinct type of Dof transcription factor known as CDF (Cycling Dof Factor). We further characterized the chromosomal distribution, gene structure, conserved protein motifs, and cis-elements in the promoter regions. Additionally, utilizing transcriptome data from Liriodendron hybrids and conducting RT-qPCR experiments, we investigated the expression patterns of LhDofs under various abiotic stresses such as drought, cold, and heat stress. Notably, we found that several LhDofs, particularly LhDof4 and LhDof6, were significantly upregulated in response to abiotic stress. Furthermore, we cloned LhDof4 and LhDof6 genes and found that its encoding protein was mainly located in the nucleus by transient transformation in Liriodendron hybrids protoplast. Subsequently, we used LhDof6-overexpressing Liriodendron hybrid seedlings. We found that overexpression of LhDof6 enhanced the cold tolerance of the plants, increasing their survival rate at -20 °C. This result was further validated by changes in physiological indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.