Abstract

Lipopolysaccharide (LPS) is the main component of Gram-negative bacteria that – upon infection – activates the host immune system and is crucial in fighting pathogens as well as in the induction of sepsis. In the present study we addressed the question whether the key structural components of LPS equally take part in the activation of different macrophage immune responses. By genomic modifications of Escherichia coli MG1655, we constructed a series of strains harboring complete and truncated forms of LPS in their cell wall. These strains were exposed to RAW 264.7 macrophages, after which phagocytosis, fast release of pre-synthesized TNF and activation of NF-κB signal transduction pathway were quantified. According to our results the core and lipid A moieties are involved in immune recognition. The most ancient part, lipid A is crucial in evoking immediate TNF release and activation of NF-κB. The O-antigen inhibits phagocytosis, leading to immune evasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.