Abstract

Alternaria alternata, a common fungal pathogen causes black mold in postharvest goji fruit. To explore the in vitro and in vivo impacts of linalool on the fungal infection, we treated A. alternata and infected goji fruit with varying linalool concentrations (0, 0.15, 0.45, and 1.35 mL L−1). Linalool repressed hypha growth, spore yield and germination, and germ tube length of A. alternata. Furthermore, we observed abnormal spore and mycelium morphology in the treated samples using optical, scanning electron, and transmission electron microscopy. Linalool reduced lesion diameter and disease incidence in goji fruit. Moreover, transcriptomic analysis of pathogen revealed that linalool inhibited nitrogen metabolism, altered chitin and β-1,3-glucan metabolisms, downregulated the key gene expression related to ergosterol synthesis and sulfur and glutathione metabolisms, regulated the enzymatic antioxidant system, and impacted the proportion of unsaturated fatty acids. Furthermore, linalool damaged the fungal cell wall integrity by inducing alkaline phosphatase and chitinase activities and β-1,3-glucan content and repressing β-1,3-glucanase and chitin synthase activities and chitin levels. Linalool elevated superoxide dismutase and catalase activities and declined peroxidase and glutathione reductase activities and glutathione content in A. alternata, leading to increased H2O2 levels and ROS stress. Our data exhibited the promising antifungal effects of linalool with a future application in management of the postharvest rot of goji fruit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.