Abstract

The solute carrier family 7 (SLC7) can be categorically divided into two subfamilies, the L-type amino acid transporters (LATs) including SLC7A5-13, and SLC7A15, and the cationic amino acid transporters (CATs) including SLC7A1-4 and SLC7A14. Members of the CAT family transport predominantly cationic amino acids by facilitating diffusion with intracellular substrates. LAT1 (also known as SLC7A5), is defined as a heteromeric amino acid transporter (HAT) interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide to uptake not only large neutral amino acids, but also several pharmaceutical drugs to cells. In this review, we provide an overview of the interaction of the structure-function of LAT1 and its essential role in cancer, specifically, its role at the blood-brain barrier (BBB) to facilitate the transport of thyroid hormones, pharmaceuticals (e.g., I-DOPA, gabapentin), and metabolites into the brain. LAT1 expression increases as cancers progress, leading to higher expression levels in highgrade tumors and metastases. In addition, LAT1 plays a crucial role in cancer-associated reprogrammed metabolic networks by supplying tumor cells with essential amino acids. The increasing understanding of the role of LAT1 in cancer has led to an increase in interest surrounding its potential as a drug target for cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call