Abstract

Natural rubber (NR) is extensively utilized in numerous industries, such as aerospace, military, and transportation, because of its exceptional elasticity and all-around mechanical qualities. However, commercial NR made using various techniques typically has distinct mechanical characteristics. For instance, whole field latex rubber (SCR-WF) cured with accelerator 2-Mercaptobenzothiazole exhibits poor mechanical properties. This work attempts to enhance the mechanical property of SCR-WF via the addition of lanthanum stearate (LaSt). The influence of LaSt on strain-induced crystallization (SIC) and the mechanical properties of SCR-WF were investigated. The results of crosslinking density measured by the equilibrium swelling method demonstrate that the presence of LaSt significantly increases the crosslinking density of SCR-WF with lower loading of LaSt. The results of the mechanical properties show that the introduction of LaSt can enhance the tensile strength and fracture toughness of SCR-WF. To reveal the mechanism of LaSt improving the mechanical properties of SCR-WF, synchrotron radiation wide-angle X-ray diffraction (WAXD) experiments were used to investigate the SIC behaviors of SCR-WF. We found that the LaSt leads to higher crystallinity of SIC for the strain higher than 3.5. The tube model indicates the contribution of LaSt in both crosslinking and topological constraints. This work may provide an instruction for developing SCR-WF with superior mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call