Abstract

In vivo, normal mammary epithelial cells utilize hemidesmosome attachment devices to adhere to stroma. However, analyses of a potential role for hemidesmosomes and their components in mammary epithelial tissue morphogenesis have never been attempted. MCF-10A cells are a spontaneously immortalized line derived from mammary epithelium and possess a number of characteristics of normal mammary epithelial cells including expression of hemidesmosomal associated proteins such as the two bullous pemphigoid antigens, alpha 6 beta 4 integrin and its ligand laminin-5. More importantly, MCF-10A cells readily assemble mature hemidesmosomes when plated onto uncoated substrates. When maintained on matrigel, like their normal breast epithelial cell counterparts, MCF-10A cells undergo a branching morphogenesis and assemble hemidesmosomes at sites of cell-matrigel interaction. Function blocking antibodies specific for human laminin-5 and the alpha subunits of its two known receptors (alpha 3 beta 1 and alpha 6 beta 4 integrin) not only inhibit hemidesmosome assembly by MCF-10A cells but also impede branching morphogenesis induced by matrigel. Our results imply that the hemidesmosome, in particular those subunits comprising its laminin-5/integrin 'backbone', play an important role in morphogenetic events. We discuss these results in light of recent evidence that hemidesmosomes are sites involved in signal transduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call