Abstract

Chronic pain and depression affect millions of people worldwide, and their comorbidity tends to exacerbate the severity of each individual condition. Intersecting brain regions and molecular pathways could probably explain the unique yet complex bidirectional relationship between these two disorders. Recent studies have found that inflammatory reactions, frequently identified in both chronic pain and depression, stimulate certain enzymes in the kynurenine pathway, while concurrently suppressing others. Kynurenine, a major tryptophan derivative, and its metabolites have been implicated in several inflammation-associated pain syndromes and depressive mood disorders. Due to inflammation, 95% of tryptophan is metabolized via the kynurenine pathway, which drives the reaction towards the production of metabolites that have distinct roles in the pathophysiology of these disorders. Diminished levels of the neuroprotective metabolite, kynurenic acid (KYNA), and elevated levels of the neurotoxic metabolite, quinolinic acid (QUIN), have been frequently identified in human patients formally diagnosed with these disorders, as well as animal models commonly used in medical research. This review not only explores the epidemiology of comorbid chronic pain and depression, but also highlights the involvement of kynurenine and its metabolites, specifically KYNA and QUIN, in these pervasive conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.