Abstract

p75 and the Nogo receptor form a signaling unit for myelin inhibitory molecules, with p75 being responsible for RhoA activation. Because p75 lacks the GDP/GTP exchange factor domain, it has remained unclear how p75 activates RhoA. Here, we report that Kalirin9, a dual RhoGEF, binds p75 directly and regulates p75-Nogo receptor-dependent RhoA activation and neurite inhibition in response to myelin-associated glycoprotein. The region of p75 that Kalirin9 binds includes its mastoparan-like fifth helix, which was shown to recruit RhoGDI-RhoA. As predicted from the presence of a shared binding site, we found that Kalirin9 competes with RhoGDI for p75 binding in a dose-dependent manner in vitro. In line with these data, myelin-associated glycoprotein addition to cerebellar granule neurons resulted in a reduction in the association of Kalirin9 with p75, and a simultaneous increase in the binding of RhoGDI to p75. These results reveal a mechanism by which the fifth helix of p75 regulates RhoA activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.