Abstract

BackgroundKaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts. However, the precise cellular mechanism of action of kaempferol in osteogenesis is elusive.Autophagy is a major intracellular degradation system, which plays an important role in cell growth, survival, differentiation and homeostasis in mammals. Recent studies showed that autophagy appeared to be involved in the degradation of osteoclasts, osteoblasts and osteocytes, potentially pointing to a new pathogenic mechanism of bone homeostasis and bone marrow disease. The potential correlation between autophagy, osteogenesis and flavonoids is unclear.MethodsThe present study verified that kaempferol promoted osteogenic differentiation and mineralization and that it elevated osteogenic gene expression based on alkaline phosphatase (ALP) activity, alizarin red staining and quantitative PCR. And then we found that kaempferol induced autophagy by acridine orange (AO) and monodansylcadaverine (MDC) staining and autophagy-related protein expression. The correlation between kaempferol-induced autophagy and the osteogenic process was confirmed by the autophagy inhibitor 3-methyladenine (3-MA).ResultsKaempferol promoted the proliferation, differentiation and mineralization of osteoblasts at a concentration of 10 μM. Kaempferol showed cytotoxic properties at concentrations above 50 μM. Concentrations above 10 μM decreased ALP activity, whereas those up to 10 μM increased ALP activity. Kaempferol at concentrations up to 10 μM also increased the expression of the osteoblast- activated factors RUNX-2, osterix, BMP-2 and collagen I according to RT-PCR analyses. 10 μM or less, the higher of the concentration and over time, kaempferol promoted the activity of osteoblasts. Kaempferol induced autophagy. It also increased the expression of the autophagy-related factors beclin-1, SQSTM1/p62 and the conversion of LC3-II from LC3-I. The application of 3-MA decreased the activity of ALP and the autophagy induced by kaempferol. In the RT-PCR analysis, the expression of RUNX-2, osterix, BMP-2 and collagen I was decreased.ConclusionThe present study showed that kaempferol stimulated the osteogenic differentiation of cultured osteoblasts by inducing autophagy.

Highlights

  • Kaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts

  • The aim of this study was that kaempferol promoted both bone formation and autophagy and that kaempferol-induced autophagy played a major role in controlling the osteogenic process in MC3T3-E1 osteoblastic cells

  • Osteoblasts give rise to bone formation through a process of cell proliferation, differentiation and mineralization. They produce extracellular calcium deposits, which can be detected by alizarin red Kaempferol did not exert a cytotoxic effect below 50 μM in the MC3T3-E1 cells We first examined the cytotoxicity of kaempferol over a wide concentration range using an Methyl thiazolyl tetrazolium (MTT) assay in the MC3T3-E1 cells

Read more

Summary

Introduction

Kaempferol, a kind of flavonol, has been reported to possess various osteogenic biological activities, such as inhibiting bone resorption of osteoclasts and promoting the differentiation and mineralization of preosteoblasts. Recent studies showed that autophagy appeared to be involved in the degradation of osteoclasts, osteoblasts and osteocytes, potentially pointing to a new pathogenic mechanism of bone homeostasis and bone marrow disease. The bone remodeling process involves bone resorption by osteoclasts, followed by bone formation by osteoblasts [3]. Osteoporosis is a well-known bone metabolic disease that occurs due to a decrease in bone mass and density caused by a bone remodeling imbalance [4]. All flavonoids are composed of two phenolic rings, which are connected by a 3-carbon unit. They are classified as flavonols, flavones, flavanones, isoflavones, catechins, anthocyanidins and chalcones according to the hydroxylation and oxidation binding positions of their chemical structures (Fig. 1)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.