Abstract

Astrophysical jets are associated with the formation of young stars of all masses, stellar and massive black holes, and perhaps even with the formation of massive planets. Their role in the formation of planets, stars, and galaxies is increasingly appreciated and probably reflects a deep connection between the accretion flows - by which stars and black holes may be formed - and the efficiency by which magnetic torques can remove angular momentum from such flows. We compare the properties and physics of jets in both non-relativistic and relativistic systems and trace, by means of theoretical argument and numerical simulations, the physical connections between these different phenomena. We discuss the properties of jets from young stars and black holes, give some basic theoretical results that underpin the origin of jets in these systems, and then show results of recent simulations on jet production in collapsing star-forming cores as well as from jets around rotating Kerr black holes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.