Abstract
I review studies of core collapse supernovae (CCSNe) and similar transient events that attribute major roles to jets in powering most CCSNe and in shaping their ejecta. I start with reviewing the jittering jets explosion mechanism that I take to power most CCSN explosions. Neutrino heating does play a role in boosting the jets. I compare the morphologies of some CCSN remnants to planetary nebulae to conclude that jets and instabilities are behind the shaping of their ejecta. I then discuss CCSNe that are descendants of rapidly rotating collapsing cores that result in fixed-axis jets (with small jittering) that shape bipolar ejecta. A large fraction of the bipolar CCSNe are superluminous supernovae (SLSNe). I conclude that modeling of SLSN light curves and bumps in the light curves must include jets, even when considering energetic magnetars and/or ejecta interaction with the circumstellar matter (CSM). I connect the properties of bipolar CCSNe to common envelope jets supernovae (CEJSNe) where an old neutron star or a black hole spirals-in inside the envelope and then inside the core of a red supergiant. I discuss how jets can shape the pre-explosion CSM, as in Supernova 1987A, and can power pre-explosion outbursts (precursors) in binary system progenitors of CCSNe and CEJSNe. Binary interaction also facilitates the launching of post-explosion jets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.