Abstract

In the present work, the role of the reaction temperatures on the morphologies of zinc oxide-reduced graphene oxide (ZnO-RGO) nanohybrids and their supercapacitive performance in two different aqueous electrolytes (1.0 M KCl and Na2SO4) were investigated. The ZnO-RGO nanohybrids were synthesized at two different temperatures (ca. 95 and 145 °C) by solvothermal method and labeled as ZnO-RGO-1 and ZnO-RGO-2, respectively. The structure and composition of ZnO-RGO nanohybrids were confirmed by means of X-ray diffraction, electron microscopes (scanning and transmission), X-ray photoelectron, photoluminescence, and Raman spectroscopy. These results show that the temperature allows a good control on loading and morphology of ZnO nanoassemblies in ZnO-RGO nanohybrids and at elevated temperature of 145 °C, ZnO nanoassemblies break and get completely embedded into RGO matrices. The electrochemical performance of ZnO-RGO nanohybrids was examined by cyclic voltammograms (CVs), galvanostatic charge-discharge (chronopotentiometry) and electrochemical impedance spectroscopy (EIS) in 1.0 M KCl and Na2SO4 aqueous electrolytes respectively. Combining the EIS and zeta potential behavior, a direct link between the charge transfer resistance and electrical double layers is established which is responsible for excellent capacitive performance of ZnO-RGO-2. The ZnO-RGO-2 displays high specific capacitance (107.9 F/g, scan rate = 50 mVs(-1)) in 1.0 M KCl and exhibits merely 4.2% decay in specific capacitance values over 200 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.