Abstract
Intraspecific variation in diatoms has been shown to play a key role in species' responses to several important environmental factors such as light, salinity, temperature and nutrients. Furthermore, modelling efforts indicate that this variation within species extends bloom periods, and likely provides sufficient variability in competitive interactions between species under hydrographically variable conditions. The intraspecific variation most likely corresponds to optimal fitness in temporary microhabitats and may help to explain the paradox of the plankton. Here, we examine the implications of intraspecific variation for the ecology and success of diatoms in general and emphasize the potential implications for our understanding of carbon metabolism in these important organisms. Additionally, data from palaeoecological studies have the potential for evaluating genetic variation through past climate changes, going thousands of years back in time. We suggest pathways for future research including the adoption of multiple strains of individual species into studies of diatom carbon metabolism, to refine our understanding of the variation within and between species, and the inclusion of experimental evolution as a tool for understanding potential evolutionary responses of diatom carbon metabolism to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.