Abstract
The influence of extracellular and intracellular calcium on smooth muscle contractile activity varies between organs. In response to G protein-coupled receptor (GPCR) stimulation, the urinary bladder detrusor muscle has shown a 70% dependence on extracellular calcium, whereas the urothelium and lamina propria (U&LP) has a 20%-50% dependence. However, as this only accounts for partial contractile activity, the contribution of intracellular calcium and calcium sensitization pathways remains unclear. This study assessed the role of intracellular signaling pathways on GPCR-mediated urinary bladder U&LP contraction. Porcine U&LP responses to activation of the Gq/11-coupled muscarinic, histamine, 5-hydroxytryptamine (serotonin), neurokinin, prostaglandin, and angiotensin II receptors were assessed with three selective inhibitors of store-released intracellular calcium, 2-aminoethyl diphenylborinate (2-APB), cyclopiazonic acid (CPA), and ruthenium red, and three Rho kinase inhibitors, fasudil, Y-27632, and GSK269962. There was no discernible impact on receptor agonist-induced contractions of the U&LP after blocking intracellular calcium pathways, suggesting that this tissue is more sensitive to alterations in the availability of extracellular calcium. However, an alternative mechanism of action for GPCR-mediated contraction was identified to be the activation of Rho kinase, such as when Y-27632 significantly reduced the GPCR-mediated contractile activity of the U&LP by approximately 50% (P < 0.05, n = 8). This suggests that contractile responses of the bladder U&LP do not involve a significant release of calcium from intracellular stores, but that Gq/11-coupled receptor activation causes calcium sensitization via Rho kinase. This study highlights a key role for Rho kinase in the urinary bladder, which may provide a novel target in the future pharmaceutical management of bladder contractile disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.