Abstract

We use an atomistic spin model to simulate FePt-based bilayers for heat assisted magnetic recording (HAMR) devices and investigate the effect of various degrees intermixing that might arise throughout the fabrication, growth and annealing processes, as well as different interlayer exchange couplings, on HAMR magnetisation dynamics. Intermixing can impact the device functionality, but interestingly does not deteriorate the properties of the system. Our results suggest that modest intermixing can prove beneficial and yield an improvement in the magnetisation dynamics for HAMR processes, also relaxing the requirement for weak exchange coupling between the layers. Therefore, we propose that a certain intermixing across the interface could be engineered in the fabrication process to improve HAMR technology further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.