Abstract

AbstractRelative humidity (RH) is projected to increase over ocean but decrease over land under anthropogenic warming. The land RH decrease was previously attributed to ocean influences on land changes. Here, we show that interactive soil moisture (SM) is necessary and may be sufficient for anthropogenic warming to reduce the land RH. The land RH decrease is absent in simulations with realistic land‐ocean geometry but fixed SM, and present in simulations with interactive SM but no oceans or changes in precipitation minus evaporation. The land RH decrease is coupled to the SM decline and the latter could be understood as a natural response of interactive SM to anthropogenic warming. Specifically, prior to adjustments in SM and RH, evaporation would increase by ∼6% K−1 following the Clausius–Clapeyron relation, outpacing the radiatively constrained ∼2% K−1 precipitation increase. This prior imbalance depletes SM and consequently reduces RH through the coupling between SM and RH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.