Abstract

The development of self-compacting concrete is considered as a milestone achievement in concrete technology due to several advantages. In order to be self-compactable the fresh concrete must show high fluidity besides good cohesiveness. For the purpose of evaluating these properties, several concrete mixtures were prepared with a water to cement ratio of 0.45 in the presence of an acrylic-based superplasticizer at a dosage ranging from 1% to 2% by weight of very fine material fraction (maximum 150 μm). Either limestone powder or fly ash or recycled aggregate powder (that is a powder obtained from the rubble recycling process) were used as mineral addition, in order to assure adequate rheological properties, in terms of cohesiveness, in the self-compacting concretes. Preliminary rheological tests were carried out on cement pastes containing these mineral additions. In some cases, recycled instead of natural aggregate was used by substituting either the coarse or the fine aggregate fraction. The fresh concrete properties were evaluated through slump flow, L-box test and segregation resistance. Compressive strength of concrete was determined at 1, 3, 7 and 28 days of wet curing. Results obtained showed that an optimization of self-compacting concrete mixture seems to be achievable by the simultaneous use of rubble powder and coarse recycled aggregate with improved fresh concrete performance and unchanged concrete mechanical strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.